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Abstract

All parametric analysis focus on the "synthetic" rariables created by applying

weights to "observed" variables. These synthetic variable scores are called by different

names across methods. The present paper explains four ways of computing the synthetic

scores in factor analysis: ( ) regression scores, (b) Bartlett's algorithm, (c) Anderson-

Rubin, and (d) standardized, noncentered factor scores. A description and illustration of

the derivation and utility of factor scores in multivariate analysis was undertaken.

Additionally, an attempt to explain the concept that factor scores are synthetic variables,

or weighted combinations of the observed scores, and are similar to yhat in egression was

undertaken as well.



Factor Scores
3

It is important for researchers to understand that all parametric analyses are

correlational and invoke weights applied to "observed" variables to create the "synthetic"

variables that are actually the focus ofthe analysis and yield variance-accounted-for effect

sizes (Fan, 1992; Knapp, 1978; Thompson, 1991). The conventional language we use

obscure these realizations and confuses those attempting to gain an understanding of

parametric analyses. For example, we call the same systems of weights "equations" in

regression, "factors" in factor analysis, "functions" or "rules" in discriminant analysis, and

"functions" in canonical correlation analysis. We call the weights themselves "beta"

weights in regression, "pattern coefficients" in factor analysis, and "standardized function

coefficients" in discriminant function or canonical correlation analysis. The synthetic

scores are called "yhat" in regression, "factor scores" in factor analysis, "discrimant

scores" in discriminant analysis, and "canonical function (or variate) scores" in canonical

correlation analysis.

The present paper explains in detail the synthetic scores computed in factor

analysis--factor scores. Specifically, four ways of computing factor scores will be

explained. These include: (a) regression scores, (b) Bartlett's algorithm, and (c) the

Anderson-Rubin method (Gorsuch, 1983). A fourth alternativestandardized,

noncentered factor scores (Thompson, 1993)--will also be explained.

A small data set from Holzinger and Swineford (1939) will be used to heuristically

illustrate all calculations. The variables are from a battery of 301 scores on 9 achievement

tests. The nine tests analyzed were:

I. Paragraph comprehension test

4
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2. Sentence completion test

3. Word meaning test

4. Speeded addition test

5. Speeded counting of dots in shape

6. Speeded discrimination of straight and curved caps

7. Memory of target words

8. Memory of target numbers

9. Memory of object-number association targets

The purpose of factor analysis is to simplify the matrix of association by finding the

underlying constructs between the variables and separating these into a smaller set of

factors. The factors are latent variables that cannot be directly observed or counted or

measured. Interest centers mainly on the commonfactors, which are interpreted with

reference to the observed variables. In the pt esent study, factor analysis indicated the

presence of three factors. An examination of the observed variables indicated that these

fators represent three dimensions or constructs being measured by the achievement tests--

comprehension, speed, and memory.

An initial step in factor analysis is the computation of a matrix of association

coefficients from the raw data matrix. In the present study, a correlation matrix was used,

however, any matrix of association may be used. Examination of the correlation matrix

derived from the heuristic data set, presented in Table 1, indicates a symmetric matrix with

9 rows and 9 columns, and with redundant off-diagonal triangles (11). For any

symmetric matrix, such as a variable intercorrelation matrix, there is an inverse of this R
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matrix called such that R,, RVXV1 = Ivx (Gorsuch, 1983). 1,, is called an Identity

matrix, because any matrix times I equals the same matrix you started with. The I matrix

in matrix algebra is equivalent in regular algebra to multiplying by 1. When the symmetric

matrix is R, saying R is an I matrix is the same as saying the variables are perfectly

uncorrelated. When factors are first extracted, the factor correlation matrix is always an

Identity matrix. After an orthogonal (orthogonal = uncorrelated) rotation, the factor

correlation matrix is still an Identity matrix. However, in an oblique (oblique = correlated)

rotation, the factor correlation matrix is no longer an Identity matrix.

Insert Table 1 About Here

The interpretation of a factor is based upon the variables that are and are Lot

related to that factor. When the factors are uncorrelated, one matrix summarizes the

factor-variable relationships and is called the factor pattern/structure coefficient matrix.

However, just as in regression, in some cases the beta weights and structure coefficients

are the same, but when the two are not equal, both must be interpreted (Thompson,

1992). When the factors are not perfectly uncorrelated, the contribution ofeach variable

to the interpretation will differ depending upon which of several factor matrices are

examined, thus both the factor structure coefficient matrix and the factor pattern

coefficient matrix must be interpreted. The factor structure matrix presents the bivariate

correlations between the observed variable scores of the n people with the latent variable

6
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or factor scores of the same n people. This is the most commonly used matrix for the

interpretation of the factors.

The factor pattern Matrix is the weight matrix used to calculate factor scores.

Factor scores are synthetic variables, or weighted combinations of the observed scores of

the n people, and are similar to yhat scores in regression. In regression, you use the beta

weights, not the structure coefficients, to compute yhat scores. In factor analysis, if the

pattern and structure coefficients are not equal, you must use the pattern coefficients to

compute factor scores. Factor scores are the predicted scores of the n individuals on the f

factors. The factor pattern matrix represents only tne unique contribution of each factor

to each variable, arbitrarily removing redundancies among any correlated variables

originating from the same factor. Factor scores are used to relate the factors to other

variables. They reflect the impact of the factor on each variable.

The best procedure for computing factor scores would have the following

characteristics (McDonald & Burr, 1967):

First, the cornmon factor scores should have a high correlation with the factors

they are attempting to measure. Second, common factor scores should be

conditionally unbiased estimates of the true factor scores. Third, in the case of

orthogonal factors, the factor scores estimated from one factor should have zero

correlations with all other factors. Fourth, if the factors are orthogonal, the

common factor scores should correlate zero with each other. (Gorsuch, 1983,

p. 260)
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The rank of a factor pattern/structure matrix is the number of variables by the

number of factors, v x f. The rank of a correlation matrix is the number ofvariables by the

number of variables, v x v The rank of a factor correlation matrix is the number of factors

by the number offactors, fx f. According to Gorsuch (1983), in order to multipy matrices,

the number of columns in the left matrix must be equal to the number of rows in the

adjacent matrix to the right (called "conformability"). The resulting matrix in a

multiplication has rows equal to the number of rows in the leftmost matrix and columns

equal to the number of columns in the rightmost matrix. In the case of the heuristic data

set used in this study, the factor score matrix will indicate the synthetic scores of 301 (n)

individuals on thc, 3 (f) factors, as noted in Table 2.

Insert Table 2 About Here

Four ways to compute factor scores are explored in the present study: (a) the

Regression Algorithm, (b) Bartlett, (c) Anderson-Rubin and (d) the BTF score. The

analysis was performed with the SPSS commands presented in Appendix A. A factor

score is a new variable, a weighted combination of the scores on each of the variables

(McMurray, 1987). The Regression Algorithm derives the factor scores based on Z-

scores and uses the matrix formula (Z P = F), where Z is the Zscore matrix, is the

inverse of the correlation matrix, P is the pattern coefficient matrix, and F is the factor

score matrix. Due to widespread familiarity with multiple regression approaches, and the
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availability of programs, regression estimates are popular factor scores (Gorsuch, 1983, p.

262).

Bartlett (1937) suggested a Ieast-squares procedure to minimize the sum of

squares of the unique factors over the range of the variables. Bartlett's procedure is

intended to keep the noncommon factors "in their place" so that they are used only to

explain the discrepancies between the observed scores and those reproduced from the

common factors (p. 264). Bartlett's procedure leads to high correlations between the

factor scores and the factors that are being estimated.

Anderson and Rubin (1956) proceeded in the same manner as Bartlett except they

added the condition that the factor scores were required to be orthogonal, resulting in a

more complex equation than Bartlett's. The Anderson-Rubin equation produces factor

estimates whose correlations form an identity matrix (p. 265).

However, these three (Regression, Bartlett, Anderson-Rubin) algorithms yield

factor scores that are in Zscore form (each set of factor scores has a mean of zero and a

standard deviation of one). The result does not allow comparison of the mean factor

score on any given factor with the mean on other factors for the same data set. The BTF

score is based on Thompson (1983), and yields a standardized, noncentered factor score,

which allows comparisons of Fscore means, as illustrated in Table 3.

Insert Table 3 About Here
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The variables are converted to Zscore form, then the original variable means are added

back onto the Zscores, so that central tendency information is retrieved, then multiplied by

the inverse of the correlation matrix and by the pattern matrix as in the original Regression

algorithm ((Z+mean) P = F). Thus, in this procedure, the raw data are transformed

only by the division of each raw score by the standard deviation of the variable, with the

result that each variable has a standard deviation of one, but a non-zero mean. This allows

the comparison of the mean factor scores across factors to make judgments regarding the

relative importance of given factors. All four types offactor scores for Factor I are

shown in Table 4, allowing a comparison of the factor score relationships for Factor 1.

Insert Table 4 About Here

Although the means of the four types of factor scores are not equal, when the

correlations among them are examined, all of the factor scores correlate perfectly with

themselves, and are perfectly uncorrelated with all other factor scores (see Table 5). This

indicates that the factor scores conform to the McDonald and Burr (1967) specifications.

Insert Table 5 About Here

As previously indicated, the factor structure matrix is the bivariate correlation

between the n observed variables with the n latent variables. Thus, a structure coefl: sient

indicates the correlation between the scores on the observed variables (n=301) and the

1 0
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factor scores (n=301). For heuristic purposes, the following comparison between the

correlation of the n observed variables and the n factor scores and the factor structure

matrix demonstrates this, as can be noted from Table 6.

Insert Table 6 About Here

Summary

Factor scores, in addition to being used to determine the relationship between the

observed and latent variables, can also be used in Anovas, Manovas, or other statistical

analyses of differences between means in exploratory studies to provide additional

information about what is going on with the data. A major problem with multivariate

techniques such as MANOVA and canonical correlations when using a, large number of

variables is the difficulty of interpretation. Separate factor analysis of independent and

dependent variables followed by an analysis of the factor scores results in greater

interpretability because each variable set is orthogonalized and fewer variables are in the

analysis (Gorsuch, 1983, p. 365). However, factor scores would generally not be used

developing theories about structure.

Through factor analysis, a complex analysis of multiple variables can be simplified,

and patterns among the variables can be made evident. The purpose of the present paper

was an attempt to describe and illustrate the derivation and utility of factor scores in

multivariate analyses. An attempt to simplify and explain the concept that factor scores

are synthetic variables, or weighted combinations of the observed scores, and are similar

ii
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to yhat in regression was undertaken as well. It is hoped that this analysis will allow the

interested reader to come to the realization that all parametric analyses are (a)

correlational and (b) invoke weights applied to observed variables to create synthetic

variables; a concept that is often obscured by the confusing practice ofusing different

language and names to describe the same concepts.

i 2
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Table 2
Correlations Between Factor Scores and Variables.

FSCORE1 FSCORE2 FSCORE3

T6 .8863 .0944 .1191

( 301) ( 301) ( 301)

P= .000 P= .102 P= .039

T7 .9058 .0987 -.0024
( 301) ( 301) ( 301)

P= .000 P= .087 P= .967

T9 .8817 .1062 .0739

( 301) ( 301) ( 301)

P= .000 P= .066 P= .201

T10 .0350 .7727 .1449

( 301) ( 301) ( 301)

P= .546 P= .000 P= .012

T12 .0457 .8356 .0089

( 301) ( 301) ( 301)

P= .430 P= .000 P= .878

T13 .1974 .6964 .0558

( 301) ( 301) ( 301)

P= .001 P= .000 P= .335

T14 .1858 -.0215 .7871

( 301) ( 301) ( 301)

P= .001 P= .710 P= .000

T15 -.0444 .0153 .7881

( 301) ( 301) ( 301)

P= .443 P= .792 P= .000

T17 .0481 .3601 .6422

( 301) ( 301) ( 301)

P= .405 P= .000 P= .000
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Table 3
A Comparison of Factor Scores using standardized, noncentered factor scores

(Thompson, 1993. )

FSBT3

109.06
110.03
109.12
109.24
111.31

FSBT1 FSBT2

5.06 133.94
3.99 134.99
3.31 132.9
5.30 132 4

4.86 134 J5
3.58 135.34 108.67
5.85 134.62 105.89
4.94 132.56 110.89
5.52 134.28 110.87
5.34 132.77 109.83
4.31 133.40 109.64
5.09 132.81 110.25
4.76 134.48 109.58
5.33 133.22 110.12
6.46 133.22 108.94
4.71 132.78 109.20
4.27 134.38 109.26
4.06 133.81 108.34
6.51 133.40 108.23
5.25 132.90 110.71
3.63 132.84 110.14
4.35 134.50 109.85
6.03 132.98 109.00
4.06 134.74 110.00
4.28 133.33 109.32

Number of cases read: 25 Ntimber of cases listed: 25

Number of valid observations (listwise) = 301.00

Variable Mean Std Dev Minimum Maximum N Label

FSBT1 5.08 1.00 2.85 8.00 301 COMPREHENSION hard

FSBT2 133.72 1.00 131.01 136.84 301 SPEED hard

FSBT3 109.84 1.00 105.89 112.43 301 MEMORY hard
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Table 4
A Comparison of Factor Scores on Factor 1.

FSCOR1 FSCR1 FSHARD1 FSBT1

-.01769 -.01769 -.02 5.06

-1.08497 -1.08497 -1.08 3.99

-1.76143 -1.76143 -1.76 3.31

.22325 .22325 .22 5.30

-.21953 -.21953 -.22 4.86

-1.49075 -1.49075 -1.49 3.58

.77463 .77463 .77 5.85

-.14014 -.14014 -.14 4.94

.44679 .44679 .45 5.52

.26183 .26183 .26 5.34

-.76789 -.76789 -.77 4.31

.01686 .01686 .02 5.09

-.31066 -.31066 -.31 4.76

.25731 .25731 .26 5.33

1.38274 1.38274 1.38 6.46

-.36791 -.36791 -.37 4.71

-.80582 -.80582 -.81 4.27

-1.01354 -1.01354 -1.01 4.06

1.43051 1.43051 1.43 6.51

.17900 .17900 .18 5.25

-1.44236 -1.44236 -1.44 3.63

-.72166 -.72166 -.72 4.35

.95367 .95367 .95 6.03

-1.01925 -1.01925 -1.02 4.06

-.79077 -.79077 -.79 4.28
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Table 6
A Comparison of the Rotated Factor Structure Matrix and a Correlation Between

Variables and Factor Scores.

Rotated Factor Matrix:

Factor 1 Factor 2 Factor 3

T6 .88632 .09442 .11913

T7 .90577 .09867 -.00241

T9 .88167 .10625 .07386

T10 .03496 .77269 .14494

T12 .04570 .83563 .00892

T13 .19744 .69641 .05581

T14 .18580 -.02151 .78712

T15 -.04440 .01528 .78815

T17 .04814 .36013 .64217

Correlation Matrix:

FSCORE1 FSCORE2 FSCORE3

T6 .8863 .0944 .1191

T7 .9058 .0987 -.0024

T9 .8817 .1062 .0739

T10 .0350 .7727 .1449

T12 .0457 .8356 .0089

T13 .1974 .6964 .0558

T14 .1858 -.0215 .7871

T15 -.0444 .0153 .7881

T17 .0481 .3601 .6422
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APPENDIX A

SPSS Program

DATA LIST
FILE 'a:HOLZINGR.DTA' FIXED RECORDS=2 TABLE
/1 id 1-3 sex 4-4 ageyr 6-7
agemo 8-9 tl 11-12 t2 14-15 t3 17-18 t4 20-21 t5 23-24 t6 26-27 t7 29-30 t8

32-33 t9 35-36 t10 38-40 tll 42-44 t12 46-48 t13 50-52 t14 54-56 t15 58-60

t16 62-64 t17 66-67 t18 69-70 t19 72-73 t20 74-76 t21 78-79 /2 t22 11-12

t23 14-15 t24 17-18 t25 20-21 t26 23-24 .

EXECUTE.
COMPUTE SCHOOL=1.
IF (ID GT 200)SCHOOL=2.
IF (ID GE 1 AND ID LE 85)GRADE=7.
IF (ID GE 86 AND ID LE 168)GRADE=8.
IF (ID GE 201 AND ID LE 281)GRADE=7.
IF (ID GE 282 AND ID LE 351)GRADE=8.
IF (ID GE 1 AND ID LE 44)TRACK=2.
IF (ID GE 45 AND ID LE 85)TRACK=1.
IF (ID GE 86 AND ID LE 129)TRACK=2.
IF (ID GE 130)TRACK=1.
PRINT FORMATS SCHOOL TO TRACK(F1.0).
VALUE LABELS SCHOOL(1)PASTEUR (2) GRANT-WHITE/

TRACK (1)JUNE PROMOTIONS (2)FEB PROMOTIONS/.

VARIABLE LABELS T1 VISUAL PERCEPTION TEST FROM SPEARMAN VPT, PART III

T2 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS TEST

T3 PAPER FORM BOARD--SHAPES THAT CAN BE COMBINED TO FORM A TARGET

T4 LOZENGES FROM THORNDIKE--SHAPES FLIPPED OVER THEN IDENTIFY TARGET

T5 GENERAL INFORMATION VERBAL TEST
T6 PARAGRAPH COMPREHENSION TEST
T7 SENTENCE COMPLETION TEST
T8 WORD CLASSIFICATION--WHICH WORD NOT BELONG IN SET

T9 WORD MEANING TEST
T10 SPEEDED ADDITION TEST
T11 SPEEDED CODE TEST--TRANSFORM SHAPES INTO ALPHA WITH CODE

T12 SPEEDED COUNTING OF DOTS IN SHAPE

T13 SPEEDED DISCRIM STRAIGHT AND CURVED CAPS
T14 MEMORY OF TARGET WORDS
T15 MEMORY OF TARGET NUMBERS
T16 MEMORY OF TARGET SHAPES
T17 MEMORY OF OBJECT-NUMBER ASSOCIATION TARGETS

T18 MEMORY OF NUMBER-OBJECT ASSOCIATION TARGETS

T19 MEMORY OF FIGURE-WORD ASSOCIATION TARGETS
T20 DEDUCTIVE MATH ABILITY
T21 MATH NUMBER PUZZLES
T22 MATH WORD PROBLEM REASONING
T23 COMPLETION OF A MATH NUMBER SERIES
T24 WOODY-MCCALL MIXED MATH FUNDAMENTALS TEST

T25 REVISION OF T3--PAPER FORM BOARD

T26 FLAGS--POSSIBLE SUBSTITUTE FOR T4 LOZENGES.

SUBTITLE 'FACTOR 9 VARIABLES INTO 3 FACTORS ##############'.
FACTOR VARIABLES=T6 T7 T9 T10 T12 T13 T14 T15 T17/

PRINT=ALL/PLOT=EIGEN/
CRITERIA=FACTORS(3)/EXTRACTION=PC/ROTATION=VARIMAX/
SAVE=REG(ALL FSCORE).

VARIABLE LABELS FSCORE1 'COMPREHENSION reg'

FSCORE2 'SPEED reg'
FSCORE3 'MEMORY reg'.

SUBTITLE '1. Show what structure coefficients are $$$$$$$$$$'.

CORRELATIONS VARIABLES T6 T7 T9 T10 T12

T13 T14 T15 T17 WITH FSCORE1 FSCORE2 FSCORE3.

SUBTITLE '3a. Factor scores BARTLETT method ##############'.
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FACTOR VARIABLES=T6 T7 T9 T10 T12 T13 T14 T15 T17/

CRITERIA=FACTORS(3)/EXTRACTION=PC/ROTATION=VARIMAX/
SAVE=BART(ALL FSCOR).

VARIABLE LABELS FSCOR1 'COMPREHENSION bart'

FSCOR2 'SPEED bart'
FSCOR3 'MEMORY bart'.

SUBTITLE '3b. Factor scores ANDERSON-RUBIN ##############'.
FACTOR VARIABLES=T6 T7 T9 T10 T12 T13 T14 T15 T17/

CRITERIA=FACTORS(3)/EXTRACTION=PC/ROTATION=VARIMAX/
SAVE=AR(ALL FSCR).

VARIABLE LABELS FSCR1 'COMPREHENSION ar'

FSCR2 'SPEED ar'
FSCR3 'MEMORY ar'.

SUBTITLE '4a. Compute z-score
DESCRIPTIVES VARIABLES=T6 TO T17/save.

SUBTITLE '4b. Prove z-scores are z-scores *******'.

DESCRIPTIVES VARIABLES=ZT6 to ZT17.

SUBTITLE '4c. Compute regression factor scores hard way

COMPUTE FSHARD1=(.36704*ZT6)+(.38244*ZT7)+(.36666*ZT9)+(-.06692*ZT10)+
(-.05997*ZT12)+(.01598*ZT13)+(.03449*ZT14)+(-.06859*ZT15)+
(-.05238*ZT17).

COMPUTE FSHARD2=(-.04461*ZT6)+(-.03002*ZT7)+(-.03228*ZT9)+(.41486*ZT10)+
(.46499*ZT12)+(.36683*ZT13)+(-.12069*ZT14)+(-.07829*ZT15)+
(.12392*ZT17).

COMPUTE FSHARD3=(.01004*ZT6)+(-.06802*ZT7)+(-.019496*ZT9)+(-.00034*ZT10)+
(-.09376*ZT12)+(-.05743*ZT13)+(.48589*ZT14)+(.49629*ZT15)+
(.359058*ZT17).

VARIABLE LABELS FSHARD1 'COMPREHENSION hard'
FSHARD2 'SPEED hard'
FSHARD3 'MEMORY hard'.

SUBTITLE '5. Compute Thompson factor scores
COMPUTE TT6=ZT6+9.18272.
COMPUTE TT7=ZT7+17.36213.
COMPUTE TT9=ZT9+15.29900.
COMPUTE TT10=ZT10+96.27575.
COMPUTE TT12=ZT12+110.54153.
COMPUTE TT13=ZT13+193.46844.
COMPUTE TT14=ZT14+175.15282.
COMPUTE TT15=ZT15+90.00997.
COMPUTE TT17=ZT17+8.23256.
COMPUTE FSbt1=(.36704*TT6)+(.38244*TT7)+(.36666*TT9)+(-.06692*TT10)+

(-.05997*TT12)+(.01598*TT13)+(.03449*TT14)+(-.06859*TT15)+
(-.05238*TT17).

COMPUTE FSbt2=(-.04461*TT6)+(-.03002*TT7)+(-.03228*TT9)+(.41486*TT10)+
(.46499*TT12)+(.36683*TT13)+(-.12069*TT14)+(-.07829*TT15)+
(.12392*TT17).

COMPUTE FSbt3=(.01004*TT6)+(-.06802*TT7)+(-.019496*TT9)+(-.00034*TT10)+
(-.09376*TT12)+(-.05743*TT13)+(.48589*TT14)+(.49629*TT15)+
(.359058*TT17).

VARIABLE LABELS FSbtl 'COMPREHENSION hard'

FSbt2 'SPEED hard'
FSbt3 'MEMORY hard'.

SUBTITLE '6. Show factor score relationships &&&&&&&&&&&&&'.

LIST VARIABLES=FSCORE1 FSCOR1 FSCR1 FSHARD1 FSBT1/CASES=25.

DESCRIPTIVES VARIABLES=FSCORE1 to FSCR3 FSHARD1 to FSHARD3 FSbtl to FSbt3.

CORRELATIONS VARIABLES=FSCORE1 to FSCR3 FSHARD1 to FSHARD3 FSbtl to FSbt3.

LIST VARIABLES=FSBT1 FSBT2 FSBT3/CASES=25.
DESCRIPTIVES VARIABLES=FSbtl to FSbt3.


